Blocks and Cut Vertices of the Buneman Graph
نویسندگان
چکیده
Given a set Σ of bipartitions of some finite set X of cardinality at least 2, one can associate to Σ a canonical X-labeled graph B(Σ), called the Buneman graph. This graph has several interesting mathematical properties — for example, it is a median network and therefore an isometric subgraph of a hypercube. It is commonly used as a tool in studies of DNA sequences gathered from populations. In this paper, we present some results concerning the cut vertices of B(Σ), i.e., vertices whose removal disconnect the graph, as well as its blocks or 2-connected components — results that yield, in particular, an intriguing generalization of the well-known fact that B(Σ) is a tree if and only if any two splits in Σ are compatible.
منابع مشابه
When does the complement of the annihilating-ideal graph of a commutative ring admit a cut vertex?
The rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$ is an undirected simple graph whose vertex set is $mathbb{A}(R...
متن کاملSome Edge Cut Sets and an Upper bound for Edge Tenacity of Organic Compounds CnH2n+2
The graphs play an important role in our daily life. For example, the urban transport network can be represented by a graph, as the intersections are the vertices and the streets are the edges of the graph. Suppose that some edges of the graph are removed, the question arises, how damaged the graph is. There are some criteria for measuring the vulnerability of graph; the...
متن کاملComputing the blocks of a quasi-median graph
Quasi-median graphs are a tool commonly used by evolutionary biologists to visualise the evolution of molecular sequences. As with any graph, a quasi-median graph can contain cut vertices, that is, vertices whose removal disconnect the graph. These vertices induce a decomposition of the graph into blocks, that is, maximal subgraphs which do not contain any cut vertices. Here we show that the sp...
متن کاملOn the numbers of cut-vertices and end-blocks in 4-regular graphs
A cut-vertex in a graph G is a vertex whose removal increases the number of connected components of G. An end-block of G is a block with a single cut-vertex. In this paper we establish upper bounds on the numbers of end-blocks and cut-vertices in a 4-regular graph G and claw-free 4-regular graphs. We characterize the extremal graphs achieving these bounds.
متن کاملFrom copair hypergraphs to median graphs with latent vertices
The purpose of this paper is to extend the Buneman construction of partially labelled trees to the general case. This extension is related with the characterization of median graphs by Mulder and Schrijver. In the first section, we construct a graph G(H) associated with a copair hypergraph H on a finite set X and define the notion of a median graph with latent vertices (called X-median graph). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 25 شماره
صفحات -
تاریخ انتشار 2011